If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+2n-23=0
a = 9; b = 2; c = -23;
Δ = b2-4ac
Δ = 22-4·9·(-23)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{13}}{2*9}=\frac{-2-8\sqrt{13}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{13}}{2*9}=\frac{-2+8\sqrt{13}}{18} $
| -5x-5(7+2x)=-20 | | -9m=94.5 | | x²-3=13+2x | | 7v+1=1 | | -6(4x-13)=6(-4x-13) | | C^2+6x-27=0 | | 4y+4=16-2y | | 4/11=x+58/77 | | (1)/(2)(x-76)=7+8x | | -15b=-9 | | 14a+a-11a=12 | | 225=9(4x) | | 9v-5=67 | | w+2w=24⇔24 | | 5+2x+7=10 | | 4x+10=9865x-4 | | 2k−6+3k=14 | | 40-8x=8(5x7) | | 2k−6+3k=14* | | 4x+10=7x-4 | | -7y+24=11 | | 11m+13m+-12m+-10m=20 | | 8=4x+53=5x | | 40-8x=8(5x7) | | 4x+10=91x-4 | | 4x+10=235x-4 | | 4x+10=17x-4 | | 9a-22=12a-8 | | 4x+10=13x-4 | | 10x-4x-1+6=-6x+3x-4+15 | | 7v+13=90 | | -15g+12g+17g=14 |